Journal of Organometallic Chemistry, 424 (1992) 99–104 Elsevier Sequoia S.A., Lausanne JOM 22307

Synthesis of aquanitrato(1-methyl-2,2'-bipyridin-3-yl-ium)palladium(II) perchlorate hydrate

Franz L. Wimmer^{a,*}, Smita Wimmer^{b,1} and Paule Castan^b

^a Department of Chemistry, University Brunei Darussalam, Bandar Seri Begawan 3186 (Brunei) ^b Laboratoire de Chimie Inorganique, Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse Cedex (France)

(Received July 19, 1991)

Abstract

Treatment of $[Pd(bpyMe-H)Cl_2]/(bpyMe-H = 1-methyl-2,2'-bipyridin-3-yl-ium)$ with 2 mol of AgNO₃ in water yields a solution of $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ and NO₃, which on evaporation forms $[Pd(bpyMe-H)(ONO_2)_2]$. Addition of NaClO₄ to a solution of $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ and NO₃ yields $[Pd(bpyMe-H)(H_2O)(ONO_2)]ClO_4 \cdot H_2O$.

Introduction

Palladium(II) and platinum(II) complexes of the type $[M(L)_2Cl_2]$ (M = Pd, Pt; L = amine) hydrolyse in water to give $[M(L)_2(H_2O)Cl]^+$ and ultimately $[M(L)_2(H_2O)_2]^{2+}$. Despite this the number of well characterized crystalline aqua complexes is limited; to our knowledge the only example of a palladium(II) complex is $[Pd(dmp)(bquin)(H_2O)]ClO_4$ (dmp = 2-(dimethylaminomethyl)phenyl; bquin = benzo[h]quinoline) [1]. The coordination to a metal ion increases the acidity of the aqua ligand relative to pure water and hydroxy complexes can often be isolated instead. We have recently described the preparation of [Pd(terpy)(OH)]ClO₄ (terpy = 2,2': 6',2"-terpyridine) [2].

We have been studying [3–6] the coordination chemistry of the 1-methyl-2,2'-bipyridinium ion 1 (bpyMe⁺). As a ligand bpyMe⁺ is similar to 2-phenylpyridine as both molecules form cyclometallated complexes readily with Pt^{II} and Pd^{II}. However, bpyMe⁺ differs from 2-phenylpyridine in that on cyclometallation, the ligand itself is acting as a zwitterion whereas 2-phenylpyridine is negatively charged. This means that most cyclometallated compounds which contain only halides as the other ligand are neutral chloro-bridged dimers, whereas [M(bpyMe-H)Cl₂] (M = Pd, Pt) are monomers [5].

¹ Present address: Department of Chemistry, University Brunei Darussalam, Bandar Seri Begawan 3186, Brunei.

Scheme 1. Preparation and reactions of $[Pd(bpyMe-H)(H_2O)_2]^{2+}$.

Results and discussion

Treatment of $[Pd(bpyMe-H)Cl_2]$ (2a) (bpyMe-H = 1-methyl-2,2'-bipyridin-3-ylium) with 2 mol of silver nitrate in water gives a pale yellow solution containing $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ and nitrate (Scheme 1). Evaporation to dryness after removal of the precipitate of silver chloride yields $[Pd(bpyMe-H)(ONO_2)_2]$ (2b) which was recrystallised from dilute nitric acid. Addition of sodium perchlorate to the same pale yellow solution, on the other hand, gives crystals of $[Pd(bpyMe-H)(H_2O)(ONO_2)]ClO_4 \cdot H_2O$ (3).

The coordination of the nitrate ions was confirmed by infrared spectroscopy (Table 1). Coordinated nitrate has six infrared active bands [7–9]; of these ν_3 and ν_5 are in the same region (700–800 cm⁻¹) as the four strong deformation modes of the ligand. The ν_3 mode is weak and was not observed while ν_5 is at either 714 or

Assignment	$[Pd(L)(ONO_2)_2]$	[Pd(L)(H ₂ O)(ONO ₂)]ClO ₄ ·H ₂ O
$\overline{\nu(H_2O)}$		3570m
$\nu(H_2O)$		3460s,br
$\delta(H_2O)$		1675m,br
$\delta(H_2O)$		1630m,br
L (ring str)	1600w	
L (ring str)	1589s	1590s
$ONO_2(\nu_4)$	1460vs	1480vs
$ONO_2(\nu_1)$	1280vs	1298vs
$ONO_2(\nu_2)$	1017s	1012s
$ONO_2(v_2)$	989s	
$ONO_2(v_6)$	817s	~ 803
L(C-H oop)	800s	803s
L(C-H oop)	785s	792s
L(C-H oop)	745s	754s
$L(C-H oop)/ONO_2(\nu_5)^{b}$	714s	713s
$L(C-H oop)/ONO_2(\nu_5)^{b}$	708s	
H ₂ O(def)		560m,br
$\nu(\bar{P}d-ONO_2)$	339m	339m
-	318m	
	264m	270m
ν (Pd-ONO ₂)	239m	

Table 1 Infrared spectra of the complexes ^a

^a L = (bpyMe-H), v = very, s = strong, m = medium, br = broad, str = stretch, oop = out of plane, def = deformation. ^b See text.

708 cm⁻¹; the latter assignment is preferred. The spectrum of $[Pd(bpyMe-H)(ONO_2)_2]$ shows considerable splitting (28 cm⁻¹) of the ν_2 band (N-O stretch) which is much larger than that observed (10 cm⁻¹) for $[Pd(bpy)(ONO_2)_2]$ (2,2'-bi-pyridine)[10]. This can be attributed to the unsymmetrical nature of the (bpyMe-H) ligand since the σ -bonded carbon has a higher *trans* influence than the pyridyl nitrogen atom.

The Pd-ONO₂ stretching modes are assigned to the bands at 339 (*trans* to the pyridyl ring) and 239 cm⁻¹ (*trans* to the cyclometallated ring), although the latter assignment is somewhat tentative. These modes are in the same region as the Pd-Cl stretching modes (333 and 256 cm⁻¹) for [Pd(bpyMe-H)Cl₂] [5].

The infrared spectrum (Table 1) of $[Pd(bpyMe-H)(H_2O)(ONO_2)]ClO_4 \cdot H_2O$ apart from water and perchlorate bands is essentially similar to that of $[Pd(bpyMe-H)(ONO_2)_2]$, except that the ν_2 band at 1012 cm⁻¹ is no longer split. The Pd-ONO₂ stretching mode at 339 cm⁻¹ is still present, indicating that the nitrato ligand is *trans* to the pyridyl ring as in structure **3**, while the band at 239 cm⁻¹ has disappeared. The Pd-OH₂ mode cannot be identified.

The molar conductance of $[Pd(bpyMe-H)(ONO_2)_2]$ in water is 247 S cm² mol⁻¹ (1.0 × 10⁻³ M) which is typical of a 2:1 electrolyte, indicating complete aquation of the nitrato ligands:

$$\left[Pd(bpyMe-H)(ONO_2)_2 \right] \xrightarrow{H_2O} \left[Pd(bpyMe-H)(H_2O)_2 \right]^{2+} + 2NO_3^{-1}$$

Moreover, the resultant diaqua complex is not noticeably acidic, since any acid dissociation would result in a larger value for the molar conductance owing to the

	(bpyMe) ^{+ b}	$[Pd(bpyMe-H)(H_2O)_2]^{2+c}$	Δ (ppm) ^d
H(3)	8.15		_
H(4)	8.66	8.12	-0.54
H(5)	8.14	7.60	- 0.54
H(6)	8.94	8.54	-0.40
H(3')	7.84	8.45	0.61
H(4')	8.16	8.31	0.15
H(5')	7.73	7.72	- 0.01
H(6')	8.79	8.63	-0.16
Ме	4.25	4.63	

^a D_2O solution, (bpyMe)⁺ = 1-methyl-2,2'-bipyridinium. ^b Coupling constants (Hz): $J_{3,4}$, 7.9, $J_{3,5} \sim 1.5$, $J_{3,6} -$, $J_{4,5}$, 7.9, $J_{4,6}$, 1.1, $J_{5,6}$, 6.1, $J_{3'4'}$, 7.9, $J_{3'5'}$, 1.1, $J_{3'6'} \sim 1$, $J_{4'5'}$, 7.8, $J_{4'6'}$, 1.7, $J_{5'6'}$, 4.9. ^c Coupling constants (Hz): $J_{4,5}$, 8.1, $J_{4,6}$, 0.8, $J_{5,6}$, 6.1, $J_{3'4'}$, 8.3, $J_{3'5'}$, 1.2, $J_{3'6'} -$, $J_{4'5'}$, 7.9, $J_{4'6'}$, 1.6, $J_{5'6'}$, 5.5. ^d Change in chemical shift on complex formation. Negative values indicate a shift to high field.

high ionic conductance of the H_3O^+ ion. Removal of the water reverses the reaction, while addition of perchlorate allows the intermediate complex $[Pd(bpyMe-H)(H_2O)(ONO_2)]^+$ to be isolated because of the low solubility of the perchlorate salt, although the equilibrium constant for its formation is probably small. Appleton et al. [11] have shown for the *cis*- $[Pt(NH_3)_2(H_2O)_2]^{2+}$ system that the equilibrium constant for the formation of *cis*- $[Pt(NH_3)_2(H_2O)(ONO_2)]^+$ is 0.1.

In water $[Pd(bpyMe-H)(H_2O)(ONO_2)]ClO_4 \cdot H_2O$ also reforms $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ and the proton NMR spectrum in D_2O (Fig. 1) shows seven aromatic resonances. The assignments were made beginning with the observation that H(5) is the sole doublet of doublets, followed by a consideration of spin multiplicities and coupling constants as well as by several decoupling experiments (see Tab. 2).

Upon coordination and cyclometallation of $(bpyMe)^+$ to palladium(II), there is a net upfield shift of the ring protons (Table 2) indicating a flow of electron density from the metal to the π orbitals of the aromatic rings. A similar effect was reported by Newcombe et al. [12] and Steel and Caygill [13] for cyclometallated 2-phenylpyridine complexes. However, the 3'-pyridyl hydrogen is shifted downfield by 0.61 ppm. The preferred conformation of $(bpyMe)^+$ in solution is probably with the two rings orthogonal [13]. On cyclometallation the ligand is forced into a planar structure, resulting in a van-der-Waal's interaction between H(3') and the N-methyl group giving rise to a mutual deshielding.

Fig. 1. ¹H NMR spectrum of $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ in D₂O.

Table 2

¹H NMR spectra ^a

Conclusion

The formation of $[Pd(bpyMe-H)(ONO_2)_2]$ from $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ occurs via $[Pd(bpyMe-H)(H_2O)(ONO_2)]^+$ although Appleton et al. [11] showed that the addition of a large excess of nitrate to *cis*- $[Pt(NH_3)_2(H_2O)_2]^{2+}$ gave only a small amount of *cis*- $[Pt(NH_3)_2(H_2O)(ONO_2)]^{2+}$. Infrared spectroscopy shows that the aqua ligand *trans* to the pyridyl nitrogen is the first to be replaced.

Conrad and Rund [15] demonstrated in the reaction of $[M(Rphen)Cl_2] (M = Pt, Pd; Rphen = substituted phenanthroline) with dithiooxamide that if <math>\pi$ effects are kept constant, then as the σ effect increases the rate of substitution decreases with the proviso that bond-making dominates the transition state. In the formation of $[Pd(bpyMe-H)(H_2O)(ONO_2)]^+$ this implies that the aqua ligand *trans* to the pyridyl N in $[Pd(bpyMe-H)(H_2O)_2]^{2+}$ will be the more reactive. Similarly, reaction of $[Pd(bpyMe-H)Cl_2]$ with pyridine (py) yields as the first product $[Pd(bpyMe-H)(Pa)_2]^+$ in which the pyridine is *trans* to the pyridyl N [16].

Experimental

Infrared spectra were recorded (4000–200 cm⁻¹) on a Perkin-Elmer 983 spectrophotometer using both nujol and hexachlorobutadiene mulls (CsI plates) and cesium halide discs. The proton NMR spectra were recorded on a Bruker WM250 Fourier transform spectrometer. Conductance measurements in water were measured at 25°C with a Beckman RC-18A conductivity bridge. C, H, N analyses were carried out by the Interuniversity Microanalytical Services, Ecole Nationale Supérieure de Chimie de Toulouse. [Pd(bpyMe-H)Cl₂] (2a) was prepared by the method previously described [5].

Preparation of the complexes

Caution: Perchlorate salts of metal complexes with organic ligands are potentially explosive and should be handled with the necessary precautions [17].

 $[Pd(bpyMe-H)(ONO_2)_2]$ (2b). AgNO₃ (0.523 g; 3.07 mmol) was added to a stirred suspension of $[Pd(bpyMe-H)Cl_2]$ (1) (0.537 g, 1.54 mmol) in water (40 ml). AgCl precipitated immediately. The mixture was stirred for 10 min and the AgCl removed by centrifugation. A few drops of concentrated nitric acid were added to the pale yellow solution which was then evaporated to dryness. The compound was recrystallised from dilute nitric acid (pH \approx 1); yield 65%. Anal. Found: C, 33.1; H, 2.5; N, 14.0. C₁₁H₁₀N₄O₆Pd calc.: C, 33.0; H, 2.5; N, 14.0%.

 $[Pd(bpyMe-H)(H_2O)(ONO_2)]ClO_4 \cdot H_2O$ (3). $[Pd(bpyMe-H)(ONO_2)_2]$ (2b) (0.20 g; 0.50 mmol) was dissolved in a minimum amount of water to give a lemon-yellow solution. A concentrated solution of sodium perchlorate was added to the point of incipient turbidity. The solution was left for 3 days at ambient temperature whereupon yellow-orange cubes of the product 3 separated. The cubes (70%) were isolated, washed with water, ethanol and ether and dried *in vacuo*. Anal. Found: C, 27.7; H, 2.8; N, 8.8. $C_{11}H_{14}ClN_3O_9Pd$ calc.: C, 27.9; H, 3.0; N, 8.9%.

Acknowledgment

One of us (FLW) thanks the UBD Research Committee for the award of a research grant.

References

- 1 A.J. Deeming, I.P. Rothwell, M.B. Hursthouse and L. New, J. Chem. Soc., Dalton Trans., (1978) 1490.
- 2 P. Castan, F. Dahan, F.L. Wimmer and S. Wimmer, J. Chem. Soc., Dalton Trans., (1990) 2679.
- 3 S. Dholakia, R.D. Gillard and F.L. Wimmer, Inorg. Chim. Acta, 65 (1982) L121.
- 4 S. Dholakia, R.D. Gillard and F.L. Wimmer, Inorg. Chim. Acta, 69 (1983) 179.
- 5 F.L. Wimmer and S. Wimmer, Polyhedron, 4 (1985), 1665.
- 6 F.L. Wimmer, Inorg. Chim. Acta, 130 (1987) 259.
- 7 B.M. Gatehouse, S.E. Livingstone and R.S. Nyholm, J. Chem. Soc., (1957) 4222.
- 8 (a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, Wiley-Interscience, New York, 1986; (b) U. Casellato, P.A. Vigato and M. Vidali, Coord. Chem. Rev., 36 (1981) 183; (c) C.C. Addison and D. Sutton, Prog. Inorg. Chem., 8 (1967) 195.
- 9 C.C. Addison and B.M. Gatehouse, J. Chem. Soc., (1960) 613.
- 10 S. Wimmer, F.L. Wimmer, P. Castan and N.P. Johnson, J. Chem. Soc., Dalton Trans., (1989) 403.
- 11 T.G. Appleton, R.D. Berry, C.A. Davis, J.R. Hall and H.A. Kimlin, Inorg. Chem., 23 (1984) 3514.
- 12 M.A. Gutierrez, G.R. Newkome and J. Selbin, J. Organomet. Chem., 202 (1980) 341.
- 13 P.J. Steel and G.B. Caygill, J. Organomet. Chem., 327 (1987) 101.
- 14 P. Krumholz, J. Am. Chem. Soc., 73 (1951) 3487.
- 15 R.C. Conrad and J.V. Rund, Inorg. Chem., 11 (1972) 129.
- 16 S. Wimmer and F.L. Wimmer, Transition Met. Chem., 6 (1985) 238.
- 17 (a) K.N. Raymond, Chem. Eng. News, 61 (1983) 4; (b) W.C. Wolsey, J. Chem. Educ. 50 (1973) A335.